Wednesday, September 17, 2008

boiling point of water with elevation

Boiling point of water as a function of altitude/elevation/pressure?


 TABLE  1
 Changes in Standard Temperature and Pressure (in Hg) as a Function of Altitude
 
 (Ref. 1)
 TABLE  2
 
Boiling Point as a Function of 
Barometric Pressure
 
 (Ref. 2)
Altitude (ft.)
Pressure
(in. Hg)
Boiling pt.
(° F)
 
Pressure
(in. Hg)
Boiling pt. 
(° F)
Boiling pt.
[added or reduced]
(° F)
-500
30.466
212.9
 
27.6
208.04
-3.96
0
29.921
212.0
 
27.8
208.39
-3.61
500
29.384
211.1
 
28.0
208.75
-3.25
1000
28.855
210.2
 
28.2
209.10
-2.90
2000
27.821
208.4
 
28.4
209.44
-2.56
2500
27.315
207.5
 
28.6
209.79
-2.21
3000
26.817
206.6
 
28.8
210.13
-1.87
3500
26.326
205.7
 
29.0
210.47
-1.53
4000
25.842
204.8
 
29.2
210.81
-1.19
4500
25.365
203.9
 
29.4
211.15
-0.85
5000
24.896
203.0
 
29.6
211.48
-0.52
5500
24.434
202.0
 
29.8
211.81
-0.19
6000
23.978
201.1
 
29.921
212.00
0.00
6500
23.530
200.2
 
30.0
212.14
0.14
7000
23.088
199.3
 
30.2
212.46
0.46
7500
22.653
198.3
 
30.4
212.79
0.79
8000
22.225
197.4
 
30.6
213.11
1.11
8500
21.803
196.4
 
30.8
213.43
1.43
9000
21.388
195.5
 
31.0
213.75
1.75
9500
20.979
194.6
 
31.2
214.07
2.07
10000
20.577
193.6
 
31.4
214.38
2.38
 

Why?
Pressure in atmospheres, follow the relation: p = e^(-ay) where:
p is pressure [in atm]
a is 1.16*10^-4 [m^-1] and 
y is altitude [in m]  
From my chemistry text, log (Po/P) = (deltaH/W)((1/T)-(1/373)) where:
Po is sea level pressure (atmospheres), 
P is pressure, deltaH is 40,700 J/mol, 
W 19.15 [this is a constant of proportionality from the linearization of a Vapor pressure (atm) vs Temperature graph.  
Specifically, log p = (-deltaH/19.15*T) + C], T is boiling point desired and 373 is boiling point of water at one atmosphere.

No comments: