Boiling point of water as a function of altitude/elevation/pressure?
TABLE 1 | Changes in Standard Temperature and Pressure (in Hg) as a Function of Altitude | (Ref. 1) | | TABLE 2 | Boiling Point as a Function of Barometric Pressure | (Ref. 2) |
Altitude (ft.) | Pressure(in. Hg) | Boiling pt.(° F) | | Pressure(in. Hg) | Boiling pt. (° F) | Boiling pt.[added or reduced](° F) |
-500 | 30.466 | 212.9 | | 27.6 | 208.04 | -3.96 |
0 | 29.921 | 212.0 | | 27.8 | 208.39 | -3.61 |
500 | 29.384 | 211.1 | | 28.0 | 208.75 | -3.25 |
1000 | 28.855 | 210.2 | | 28.2 | 209.10 | -2.90 |
2000 | 27.821 | 208.4 | | 28.4 | 209.44 | -2.56 |
2500 | 27.315 | 207.5 | | 28.6 | 209.79 | -2.21 |
3000 | 26.817 | 206.6 | | 28.8 | 210.13 | -1.87 |
3500 | 26.326 | 205.7 | | 29.0 | 210.47 | -1.53 |
4000 | 25.842 | 204.8 | | 29.2 | 210.81 | -1.19 |
4500 | 25.365 | 203.9 | | 29.4 | 211.15 | -0.85 |
5000 | 24.896 | 203.0 | | 29.6 | 211.48 | -0.52 |
5500 | 24.434 | 202.0 | | 29.8 | 211.81 | -0.19 |
6000 | 23.978 | 201.1 | | 29.921 | 212.00 | 0.00 |
6500 | 23.530 | 200.2 | | 30.0 | 212.14 | 0.14 |
7000 | 23.088 | 199.3 | | 30.2 | 212.46 | 0.46 |
7500 | 22.653 | 198.3 | | 30.4 | 212.79 | 0.79 |
8000 | 22.225 | 197.4 | | 30.6 | 213.11 | 1.11 |
8500 | 21.803 | 196.4 | | 30.8 | 213.43 | 1.43 |
9000 | 21.388 | 195.5 | | 31.0 | 213.75 | 1.75 |
9500 | 20.979 | 194.6 | | 31.2 | 214.07 | 2.07 |
10000 | 20.577 | 193.6 | | 31.4 | 214.38 | 2.38 |
Why?
Pressure in atmospheres, follow the relation: p = e^(-ay) where:
p is pressure [in atm]
a is 1.16*10^-4 [m^-1] and
y is altitude [in m]
From my chemistry text, log (Po/P) = (deltaH/W)((1/T)-(1/373)) where:
Po is sea level pressure (atmospheres),
P is pressure, deltaH is 40,700 J/mol,
W 19.15 [this is a constant of proportionality from the linearization of a Vapor pressure (atm) vs Temperature graph.
Specifically, log p = (-deltaH/19.15*T) + C], T is boiling point desired and 373 is boiling point of water at one atmosphere.
No comments:
Post a Comment